Southern California Conferences for Undergraduate Research

Southern California Conferences for Undergraduate Research

Sexually Dimorphic Expression of Six Splicing Factors in the Developing Mouse Cortex and Hippocampus


Chris Armoskus, Courtney Donovan, Lauren Fisher, Oliva Jimenez, Kathy Trang


Houng-Wei Tsai, Assistant Professor, California State University Long Beach

The cerebral cortex and hippocampus are important for many cognitive functions, several of which are sexually dimorphic. However, the mechanism underlying functional sex differences remain undiscovered. With increasing number of neurological and mental disorders found associated with splicing defects, it has become evident that alternative splicing may play an important role in regulating brain function, especially those served by the cortex and hippocampus. Thus, we hypothesize that sexually dimorphic expression of splicing factors in the developing mouse cortex and hippocampus regulates gene expression post-transcriptionally, resulting in sex-differentiated cognitive function and behavior. To test our hypothesis, we measured mRNA levels of splicing factor 3a, subunit 2 (Sf3a2), polypyrimidine tract-binding protein-associated splicing factor (Sfpq), splicing factor suppressor of white apricot (Sfswap), and serine/arginine-rich splicing factors 1, 3, and 10 (Srsf1, Srsf3, and Srsf10) genes, in the mouse cortex and hippocampus on the day of birth (PN0) and on 7 (PN7), 14 (PN14), and 21 (PN21) days postnatal using reverse transcription with real-time polychain reaction (RT-qPCR). We found a significant age effect for all genes except Srsf10, but a significant sex effect for only Srsf10, Sfswap, and Srsf3 and a sex/age interaction for Sfswap and Srsf3. Our data demonstrate the importance of both age and sex on the expression of splicing factors found in the developing brain, implicating alternative splicing’s involvement in controlling the sexual differentiation responsible for noted sex differences in cognitive behaviors and disorders, especially those involving the cortex and hippocampus.

Presented by:

Kathy Trang


Saturday, November 17, 2012


2:45 PM — 3:00 PM


Bell Tower 1684

Presentation Type:

Oral Presentation